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Addiction, themost severe formof substance use disorder, is
a chronic brain disorder molded by strong biosocial factors
that has devastating consequences to individuals and to
society. Our understanding of substance use disorder has
advanced significantly over the last 3 decades in part due to
major progress in genetics and neuroscience research and
to the development of new technologies, including tools to
interrogate molecular changes in specific neuronal pop-
ulations inanimalmodelsof substanceusedisorder, aswell as
brain imaging devices to assess brain function and neuro-
chemistry in humans. These advances have illuminated the
neurobiological processes through which biological and
sociocultural factors contribute to resilience against or vul-
nerability for drug use and addiction. The delineation of the
neurocircuitry disrupted in addiction, which includes circuits

that mediate reward and motivation, executive control, and
emotional processing, has given us an understanding of the
aberrant behaviors displayed by addicted individuals and has
provided new targets for treatment. Most prominent are the
disruptionsof an individual’s ability toprioritize behaviors that
result in long-termbenefitover those thatprovideshort-term
rewards and the increasing difficulty exerting control over
these behaviors even when associated with catastrophic
consequences. These advances inourunderstandingofbrain
development and of the role of genes and environment on
brain structure and function have built a foundationonwhich
to develop more effective tools to prevent and treat sub-
stance use disorder.
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Drug overdoses claimedmore
than 63,300 American lives in
2016 (1), andexcessive alcohol
use and tobacco use are esti-
mated to contribute to 88,000
(2) and 480,000 (3) deaths
each year, respectively. More
than 20 million Americans suf-
fer with substance use disorder,
and overdose deaths represent only a fraction of the resul-
tant health consequences. For example, the rate of emer-
gency department visits from opioid-related overdoses or
accidents is 20 times greater than the rate of opioid overdose
death (4). Of every 1,000 babies born, six have neonatal ab-
stinence syndrome (5) and up to nine have fetal alcohol
spectrum disorders (6). Yearly there are approximately
30,500 new cases of hepatitis C (7), a virus transmitted by
injection drug use. The combined consequences of drug use
and addiction also have enormous economic consequences,
which include an estimated cost of $249 billion from al-
cohol (8), $300 billion from tobacco (3), and $193 billion
from other drugs (9). And while research has identified
many evidence-based prevention and treatment strategies
that could help reduce alcohol use and drug use and their

consequences, these inter-
ventions are highly under-
utilized and not effective for
everyone.

Our deepening under-
standing of the neurobiologi-
cal, genetic, epigenetic, and
environmental mechanisms
underlying addiction is helping

researchers identify new targets for prevention and treatment
interventions. In addition, advancing technologies—fromgene
sequencing and manipulation, to increasingly more sensitive
imaging technologies, to brain stimulation devices, to in-
formation technologies and mobile health tools—are pro-
ducingunprecedentedcapacity to interrogateaddictionand its
causes. This growing knowledge base offers unique oppor-
tunities for translation of substance use disorder prevention
and treatment strategies.

NEUROBIOLOGY OF ADDICTION RISK

The risk for addiction is related to complex interactions
between biological factors (genetics, epigenetics, develop-
mental attributes, neurocircuitry) and environmental factors

AJP AT 175
Remembering Our Past As We Envision Our Future

August 1956: Management of the Narcotic Addict 
in an Outpatient Clinic

Benjamin Boshes et al.: "The question of why some drug users 

become addicted and others do not is one which has defied 

understanding.”

(Am J Psychiatry 1956; 113:158–162)

Am J Psychiatry 175:8, August 2018 ajp.psychiatryonline.org 729

REVIEWS AND OVERVIEWS

http://ajp.psychiatryonline.org


(social and cultural systems, stress, trauma, exposure to al-
ternative reinforcers). Research has started to uncover how
psychological traits, emotions, and behaviors are encoded
in the brain; how environmental factors influence brain
circuits and subsequent behavior; and how genetic and epi-
genetic factors influence the development and functioning
of the brain, all of which are of relevance to addiction risk
and resilience.

Genetic factors account for approximately half of the risk
for addiction (10). Thus far, most genes implicated in this risk
largely influence an individual’s biological response to sub-
stances of abuse or their metabolism (11). Genetic findings
have also provided new insight into the neurobiology of
addiction. For example, a variant in the gene encoding for the
alpha 5 subunit of the nicotinic receptor, which is highly
expressed in the habenula, has been consistently associated
with higher vulnerability to nicotine addiction (12, 13). This
discovery brought attention to the importance of the mid-
brain habenula-interpeduncular axis in nicotine dependence
andwithdrawal (14). Further, studies in transgenicmice have
documented that the alpha 5 polymorphism influences the
firingpatternof pyramidal neurons in theprefrontal cortex in
a way that could help explain the greater vulnerability for
smoking among patients with schizophrenia (15). Ongoing
researchaims to identifyhowgenesmediate thedevelopment
of thehumanbrain and the subsequent sensitivity of thebrain
to environmental factors that influence the risk for substance
use disorder.

Epigenetic factors,whichorchestrategeneexpressionand
silencing, have been implicated in the long-lasting neuro-
plastic changes associated with drug taking in animal models
of addiction (16), regulating pathways through which envi-
ronmental risk factors, such as stress, influence biological
drivers of substance use and addiction (17). For example,
early life stress can influence the development of the
hypothalamic-pituitary-adrenal (HPA) axis, leading to in-
creased reactivity to stress and susceptibility to addiction.
Interestingly, preclinical studies have identified trans-
generational epigenetic effects of parental drug taking prior
to conception on addiction-related behavior in offspring
(18, 19), though such transgenerational effects have not been
demonstrated yet in humans.

Characterization of human neurodevelopment has al-
lowed us to understand why adolescents are more likely
than adults to experiment with drugs and to develop sub-
stance use disorders. This understanding in part reflects the
fact that the adolescent brain has not completed its devel-
opment and is more neuroplastic than the adult brain. The
human brain continues to develop until the early to mid-20s,
and the rate of development differs across neuronal circuits,
with development occurring faster for reward/motivation
and emotional circuits than for prefrontal top-down control
circuits, which are among the last to develop (20). As a result,
during adolescence, the striatal reward/motivation and
limbic-emotional circuits are hyperactive, leading to
greater emotional reactivity and reward-seeking behaviors.

Moreover, the prefrontal cortex cannot fully self-regulate,
leading to more impulsivity and risk taking (21). Early ex-
posure to drugs of abusemay further impair the development
of the prefrontal cortex, increasing the long-term risk for
addiction (16). The increased neuroplasticity of the adoles-
cent brain explains why addiction develops faster in an ad-
olescent than in an adult (22), and it also explains the greater
sensitivity of adolescents to environmental stimuli, such as
stress, that influence drug taking (23, 24). Similarly, studies
have started to assess the effects of social stressors on de-
velopment of the human brain, and these studies are relevant
for understanding why social stressors increase the risk for
substance use disorder and other mental illnesses. For ex-
ample, studies evaluating the effects of social deprivation
during infancy and early childhood have reported delayed
maturation that results in impaired brain connectivity, which
could underlie increased impulsivity in these children (25).
Importantly, preliminary studies have reported that inter-
ventions that provide social support and care may be able to
reverse some of these impairments (26).

Multiple psychological traits have also been shown to
influence risk for addiction, including impulsivity, novelty
and sensation seeking, and stress reactivity (27). Neurosci-
ence has started to delineate the brain circuits that mediate
these traits. For example, trait impulsivity is associated with
dysregulation of corticostriatal circuits as well as altered
activation of, and functional connectivity between, the an-
terior cingulate cortex and amygdala (28). High sensation
seeking has been associated with reduced thickness of the
anterior cingulate cortex and middle frontal gyrus (29), as
well as altered midbrain volumes (30). Stress reactivity is
correlated with prefrontal corticolimbic regulation of HPA
axis activity (31). Understanding the neurobiological basis of
traits that influence risk for substance use disorder may lead
to development of biomarkers that can be used to target
prevention interventions for individuals at high risk. Fur-
thermore, this knowledge will facilitate the development of
strategies to strengthen specific circuits to improve resilience
and support recovery.

NEUROBIOLOGY OF THE ADDICTED BRAIN

Brain imaging research has helpedmap the neuronal circuits
that mediate the relapsing pattern of addictive behaviors,
including rewarding responses during intoxication, condi-
tioning to the drug and its cues, negative mood and increased
stress reactivity during drug withdrawal, and drug craving
during exposure to cues or stressors (32).

During intoxication, the drug stimulates large bursts of
dopamine in the mesolimbic reward system (the nucleus
accumbens and dorsal striatum) that reinforce drug taking
(bingeing) (33) and strengthen conditioned associations,
which link stimuli that precede drug consumption with the
expectation of reward (34). Counterintuitively, in a person
suffering from addiction, the drug-induced dopamine in-
creases are attenuated, an effect that has been observed in
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both human subjects and animal models (35–37). In humans,
the attenuated dopamine response to the drug is associated
with reduced subjective experience of reward during in-
toxication (37). While major emphasis has been placed on
the dopaminergic system in explaining the rewarding and
reinforcing effects of drugs, it is also clear that other neu-
rotransmitters, including opioids, cannabinoids, GABA, and
serotonin—to a greater or lesser extent, depending on the
pharmacological characteristics of the drug—contribute to
the pleasurable or euphorigenic responses to drugs and to the
neuroadaptations that result in addiction (38).

As the intoxicating effects of a drug wear off, an addicted
individual enters the withdrawal phase, which is associated
with negative mood, including anhedonia, increased sensi-
tivity to stress, and significant dysphoria and anxiety. Such a
response is not typically observed in an individual with short
drug exposure history, and the duration of exposure needed
for a response to emerge varies for the different types of
drugs, with opioids producing these effects particularly
rapidly. The circuits underlying the withdrawal phase com-
prise basal forebrain areas, including the extended amygdala
as well as the habenula, and implicate neurotransmitters and
neuropeptides such as corticotropin-releasing factor (CRF),
norepinephrine, and dynorphin (39, 40). Increased signaling
in these circuits triggers aversive symptoms that render the
individual vulnerable to cravings and preoccupation with
taking the drug as means to counteract this aversive state. In
parallel, the dopamine reward/motivation system is hypo-
functional, contributing to anhedonia and the aversive state
during withdrawal (41).

During the craving stage, the conditioned stimuli (drug
cues) themselves elicit dopamine release in the striatum,
triggering the motivation to seek and consume the drug (42).
This phase also involves prefrontal circuits, including the
orbitofrontal and anterior cingulate cortex, which underlie
salience (or value) attribution (43), as well as circuits in the
hippocampus and amygdala, which mediate conditioned
responses (44).Glutamatergic projections from these regions
to the ventral tegmental area and striatum modulate the
sensitivity and reactivity to cues and to adverse emotions that
trigger the urgent motivation for, and preoccupation with,
drug taking (32).

In a brain not affected by addiction, the circuits controlling
desire for a drug are held in check by prefrontal cortical
regions that underlie executive functions, which support
making rational, healthy decisions, and that regulate emo-
tions. Thus, the awareness that a drug will provide an im-
mediate reward is balanced by consideration of long-term
goals, and the individual is able to make a reasonable choice
and carry it through. However, when the prefrontal corti-
cal circuits underlying executive functions are hypo-
functional—as a result of repeated drug exposure or from an
underlying vulnerability—and the limbic circuits underlying
conditioned responses and stress reactivity are hyper-
active—as a result of drug withdrawal and long-term neu-
roadaptations that downregulate sensitivity to nondrug

rewards—the addicted individual is at a tremendous disad-
vantage in opposing the strong motivation to take the drug.
This explains the difficulty addicted individuals face when
trying to stop taking drugs even when they experience
negative consequences and have become tolerant to the
drug’s pleasurable effects.

The delineation of the various brain circuits and neuro-
transmitters (dopamine, glutamate, dynorphin, enkephalin,
GABA, serotonin) that contribute to addiction has helped
identify potential targets for addiction treatment (see
below). For example, in animal models, interventions to en-
hance dopamine signaling through D2 receptors, which are
downregulated in addiction and are associatedwith impaired
prefrontal activity, reduce compulsive drug taking (41). In
addition, interventions that counteract the enhanced re-
activity of glutamatergic projections from the prefrontal
cortex and amygdala to the ventral tegmental area and
striatum have been shown to prevent drug taking following
exposures to cues or stressors (45), and those that counteract
thenegativemoodduring thewithdrawal state (CRForkappa
antagonists) can prevent escalation of drug use (46, 47).

In developing new strategies to prevent and treat sub-
stance use disorder, it is also important to recognize the high
rate of comorbiditywithmental illness (48–50). Patientswith
these comorbidities often have more severe and treatment-
resistant disorders compared with patients who have either
disorder alone (49, 51). Many overlapping brain regions
and circuits (49, 50, 52, 53)—including those that mediate re-
ward, executive function, andemotions—andneurotransmitter
systems—including dopamine (54–56), serotonin (57, 58),
glutamate (59, 60), GABA (61), and norepinephrine (56, 62,
63)—have been implicated in substance use disorder and
other mental illnesses. There is also overlap in the genetic
andenvironmental risk factors for thesedisorders.Genes that
influence stress reactivity, risk taking, and novelty-seeking
behaviors can influence the initiation of substance use as
well as the development of substance use disorder and other
mental illnesses. And environmental factors such as chronic
stress, trauma, and adverse childhood experiences increase
risk for both substance use disorder and mental illness
(49, 64).

ACCELERATING DEVELOPMENT OF NEW
PREVENTION INTERVENTIONS

There are several evidence-based prevention interventions
for substance use disorder that have been developed on the
basis of epidemiological data identifying factors that increase
risk for or provide resilience against substance use disorder
(Table 1).

Our increased understanding of the effects of substance
use on normal brain development, the deleterious effects of
adverse environments, and the role of innate vulnerabilities
will allow for the development of personalized intervention
to reverse or mitigate some of these deficits. For example,
adverse social environments during early childhood can
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result in delayed prefrontal limbic connectivity (25), which is
associatedwith impulsivity (66). In turn, impulsivity predicts
greater vulnerability for substance use disorder (67). How-
ever, children can be trained to improve their self-regulation
and hence control impulsivity (68). Furthermore, social
isolation and exposure to social environments with limited
support are associated with reduced dopamine D2 receptor
expression in the striatum, which is linked with greater
vulnerability for impulsivity and compulsive drug use
(69–71). Research is also starting to identify changes in brain
development triggered by early exposure to drugs, including
alcohol andmarijuana (72, 73). Future access to standardized
measures of braindevelopmentwill support thedevelopment
of early interventions to mitigate developmental vulnera-
bilities or counteract negative neuroadaptations. In this re-
spect, the recently launched Adolescent Brain Cognitive
Development Study, which aims to study 10,000 children
withbrain imaging, genotyping, anddeepphenotyping across
the transition from childhood into adulthood, will provide
valuable data for determining normal human variability in
brain development and how it is disrupted by drug use and
mental illnesses (74). Similarly, the Baby Connectome Proj-
ect, a study of brain development in children from birth
through 5 years of age (75), will provide insight into the early
development of the human brain at a stage when it is most
sensitive to adverse environmental effects, such as neglect
and abuse.

ACCELERATING DEVELOPMENT OF
NEW TREATMENTS

The substance use disorder treatment field has seen some
important successes, but therapeutic options are still limited.
Although the Food and Drug Administration (FDA) has ap-
proved medications for the treatment of opioid, alcohol,
and tobacco use disorders (Table 2) (77), which represent
meaningful advances in therapeutics for addictions, they are

not effective for all patients. Similarly, while evidence-based
psychosocial treatments (e.g., cognitive-behavioral therapy,
contingency management interventions) are available for
substance use disorder, their effectiveness is also limited (78).

Most pharmaceutical companies have been reticent to
invest in addiction due in part to stigma (79) as well as to
perceptions that the market is small, that executing clinical
trials in patients with substance use disorders is difficult
(because of frequent comorbidities, criminal or legal prob-
lems, and poor adherence to treatment protocols), and that
the regulatory bar required for FDA approval is too high (i.e.,
abstinence—discussed below [80]). These factors represent a
major challenge in medication development. Consequently,
the National Institute on Drug Abuse (NIDA) has focused on
partnering with industry to encourage drug development by
identifying promising targets and funding research to lessen
risks associated with drug development. Examples of such
partnerships include helping in the development of medica-
tions to treat opioid use disorders, such as a buprenorphine/
naloxone combination (Suboxone) (81), a 1-month extended-
release naltrexone (Vivitrol), a 6-month buprenorphine
subdermal implant (Probuphine) (82), and a “user-friendly” in-
tranasal opioid overdose naloxone formulation (Narcan Nasal
Spray) (83). The current opioid crisis has further highlighted
the urgency for greater participation of industry in medication
development (84).

Inparallel, research isongoing to translatebasic knowledge
about the molecular pathways and brain circuits involved in
substance use disorders into new treatments. A promising
strategy explores the use of pharmacotherapies that target
endophenotypes associated with addiction—for example, us-
ing cognitive enhancers to improve impulse control, planning,
and decisionmaking (85–87), and usingmedications to reduce
stress reactivity and dysphoria to prevent relapses (88, 89).
As discussed above, various neurotransmitter systems are
involved in such cognitive and emotional functions and rep-
resent potential therapeutic targets.

TABLE 1. Strategies for Prevention of Substance Use Disordera

Modifiable Risk Factor Intervention Domain Protective Factor

Early aggressive behavior Self-regulation skills training Individual Self-control
Poor social skills Social skills training Individual Positive relationships
Exposure to stress Stress resilience training Family or community Resilience to stress
Insufficient parental supervision Parenting skills training Family Parental monitoring and support
Low self-confidence Educational interventions; tutoring Family or schools Academic success
Early substance use Early prevention interventions Individual Delayed initiation
High drug availability Supply reduction policies;

community policing
Community or schools Low drug availability

Misperceptions of drug use
norms

Norms training Community or schools Knowledgethatmajoritydonotuse
drugs

Peer substance use Refusal skills training Community or schools Non-substance-using peers
Permissive drug culture Community-level interventions Community or schools Social norms rejecting substance

misuse
Poverty Jobs training; community-

building interventions
Societal Economic opportunity

a Strategies include decreasing risk factors and enhancing protective factors at the individual, family, community or school, and societal levels. Modified from
reference 65.
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Another strategy involves “repurposing” medications al-
ready approved for other indications. Because there is
overlap in the neuropathology and symptomatology between
substance use disorder and other mental illnesses (see the
section “Neurobiology of the Addicted Brain”), and many of
themedicationsused to treatmental illnessesbind tomultiple
therapeutic targets (90), some of these may be beneficial for
substance use disorders. The medications’ existing safety
profiles and pharmacology data shorten the timeline for
obtaining FDA approval if the drugs are found effective for
treating substance use disorders. A notable example is
bupropion, which was originally developed as an antide-
pressant andwas subsequently found to be clinically useful in
smoking cessation (91).

Although there is only one approved drug combination for
substance use disorders (i.e., the buprenorphine/naloxone
combination), the few studies evaluating other drug com-
binations have shown promising results. For example, the
combination of buprenorphine with naltrexone not only
decreased cocaine use in individuals with dual cocaine and
heroin use disorders (92) but also reduced heroin use to a
greater extent than buprenorphine alone (93). Similarly, the
combination of lofexidine anddronabinol reduced symptoms
of cannabis withdrawal significantly more than either
medication alone (94).

Research is also ongoing to define endpoints other than
abstinence for measuring treatment efficacy, such as clini-
cally meaningful reductions in drug use associated with
improvements in health outcomes (95). Such adjustments
could reduce the regulatory bar for obtaining FDA approval
for new therapeutics. For example, research has indicated
that reduced use of cocaine led to decreased endothelial

dysfunction, a marker of heart-disease risk associated with
chronic cocaine use (96). Importantly, there is precedent for
alternative endpoints: the FDA has approved the use of
percentage of subjects with no heavy drinking days as an
outcome for alcohol use disorder. This measurement is
sensitive for detecting differences between medication and
placebo, and allowing some days of consumption increases
the effect size (97). In the case of opioid use disorders, a
relevant endpoint could be overdose prevention; recently, a
study on parolees found reduced overdoses were associated
with extended-release naltrexone (98).

Promising Pharmacological Targets
The preclinical literature includes awide range of promising
strategies for substance use disorders that aim either at the
main protein target of specific drugs, at modulators of the
brain rewardsystem,or atmodulators ofdownstreamcircuits
disrupted in addiction (Figure 1).

Therapeutic strategies that target the mu-opioid receptor
have been most effective for opioid use disorders and are
beingpursued in thedevelopment of nonaddictive analgesics,
which could help reduce the risk of addiction as an un-
intended consequence of pain management (84). In this
respect, the recent identification of the structure of the
mu-opioid receptor has provided novel insights into mech-
anisms of tolerance and is facilitating development of med-
ications that target specific intracellular signaling pathways
of the mu-opioid receptor, referred to as biased agonists.
Biased opioid agonists that are developed as analgesics target
the G-coupled protein “Gi” intracellular pathway, which is
believed to underlie analgesia, while not engaging the
b-arrestin pathway, which is associated with tolerance and

TABLE 2. Medications for Addiction Treatmenta

Medication Use Formulations DEA Schedule

Buprenorphine/naloxone Opioid use disorder Sublingual or buccal film III
Sublingual tablet (76)

Buprenorphine Opioid use disorder Sublingual tablet III
6-month buprenorphine
subdermal implant

1-month extended-release
buprenorphine injectionb

Methadone Opioid use disorder Tablet II
Oral solution
Injection

Naltrexone Opioid use disorder;
alcohol use disorder

Tablet Not scheduled
Extended-release injectable

Acamprosate Alcohol use disorder Delayed-release tablet Not scheduled
Disulfiram Alcohol use disorder Tablet Not scheduled
Nicotine replacement therapies Nicotine addiction Transdermal patches Not scheduled

Gum
Lozenges
Inhalers
Nasal spray

Bupropion Nicotine addiction Tablet Not scheduled
Varenicline Nicotine addiction Tablet Not scheduled

a Modified from reference 65. DEA=Drug Enforcement Administration.
b One-week buprenorphine injection is being evaluated by the Food and Drug Administration.
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the respiratory-depressing effects of opioid agonists (99).
Phase 3 clinical testing of amu-opioid receptor biased agonist
(TRV130) is under way (100, 101). In addition, the orvinol
analogue BU08028, a compound similar to buprenorphine,
has been shown to be a safe opioid analgesic without abuse
liability innonhumanprimates (102). Research into these and
other opioids (103) is poised to lead to improved treatments
for opioid use disorders and pain.

Novel pharmacological approaches for treating opioid use
disorders that do not involve the mu-opioid receptor include
strategies to modulate the reward circuit via antagonism of
the neurokinin 1 receptor (104) and to counteractwithdrawal
via antagonismof the kappa-opioid receptor (89). Lofexidine,
ana2A-adrenergic receptor agonist originallydevelopedasan
antihypertensive, also decreases opioid withdrawal symp-
toms and is undergoing NIDA-funded trials (105, 106). An-
other promising medication is lorcaserin, a selective 5-HT2C
receptor agonist already FDA-approved for weight loss that
reduces opioid seeking in rodent models (107).

Oxytocin, a neuropeptide known for its role in social
bonding, is also of interest for substance use disorder.
Oxytocin-expressing neurons project to brain regions im-
plicated in reward (including the ventral tegmental area and
nucleus accumbens) (108, 109) and stress (including the
amygdala and hippocampus) (108, 109). Preclinical studies
have shown that oxytocin decreases self-administration of
heroin (110), cocaine (111, 112), methamphetamine (113), and
alcohol (114–116) and also alleviates nicotine withdrawal
(117). Oxytocin treatment during adolescence also reduced
methamphetamine (118) and alcohol (119) seeking in adult

rodents. In addition, oxytocin reduced reinstatement of drug
seeking in rodents in response to triggers of drug craving for
methamphetamine (120–122) and cocaine (112, 123, 124). In
humans, intranasal oxytocin reduces cue-induced craving
for nicotine (125), stress-induced craving formarijuana (126),
and withdrawal and anxiety symptoms.

Cannabinoids may also be useful for treating substance
use disorders, and identifying medications that target the
endocannabinoid system without producing cognitive im-
pairment and rewarding effects could lead to new treat-
ments for substance use disorders. For example, dronabinol
(a synthetic tetrahydrocannabinol [THC] formulation ap-
proved for AIDS-related anorexia and chemotherapy-related
nausea) reduced withdrawal symptoms associated with
cannabis use disorder (127), and nabilone (a synthetic can-
nabinoid similar to THC) reduced cannabis withdrawal- and
relapse-related measures in human laboratory studies (128).
In addition, a study of nabiximol (an oral mucosal spray
containing a THC-to-cannabidiol [CBD] ratio of 1:1) found
reductions in severity and duration of cannabis withdrawal
and increased retention in treatment (129). Finally, an on-
going randomized clinical trial will evaluate whether CBD
(Epidiolex), when added to medical management, can im-
prove treatment outcomes for cannabis use disorders (130).

The body’s endogenous cannabinoids (anandamide and
2-arachidonoylglycerol, or 2-AG, which interact with can-
nabinoid receptors CB1R and CB2R) optimize the inhibitory
and excitatory balance in the brain in a state-dependent
manner (131), so side effects might occur with orthosteric
ligands that either activate (e.g., dronabinol) or block (e.g.,

FIGURE 1. The Three Stages of the Addiction Cycle and the Main Brain Regions Implicateda
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a Potential medication targets and therapeutic strategies that target each stage are listed. KOR=kappa-opioid receptor; NK1=neurokinin 1;
tDCS=transcranial direct current stimulation; TMS=transcranial magnetic stimulation. Modified from reference 65.
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rimonabant) CB1R broadly. For example, rimonabant, which
showed efficacy in treating obesity and inhibiting the re-
warding effects of cannabis,was also associatedwithnegative
affect and suicidal ideation (132). Instead, themanipulationof
cannabinoid receptors (CB1R or CB2R) via allosteric mod-
ulators, which simply enhance or inhibit receptor responses
to endocannabinoids, maintaining the state dependence of
the endocannabinoid system, may be more promising for
medication development. Although the development of
CB1R allosteric modulator medications is in its infancy (133),
the negative allosteric modulator pregnenolone appears to
protect against the intoxicating effects of THC (134) and is
being evaluated for the treatment of cannabis use disorder. In
addition, the positive allosteric CB1R modulator ZCZ011 has
antinociceptive effects without being reinforcing (135) and
thus holds potential as a nonaddictive analgesic.

Other endocannabinoid system modulators being evalu-
ated for cannabis use disorder include specific inhibitors of
fatty acid amide hydrolase or of monoglycerol lipase, which
slow the breakdown of endocannabinoids, as these com-
poundsmayreducewithdrawal symptomsand/ormay lead to
new nonaddictive analgesics (136, 137).

Stimulant use disorders have been among the most
challenging for therapeutics development. The most in-
vestigated strategy has been the use of longer-acting stimu-
lant medications (e.g., methylphenidate and amphetamines)
for cocaine addiction. Many of these studies have failed to
reach significant positive outcomes, except in individuals
with comorbid attention deficit hyperactivity disorder.
However, a meta-analysis reported evidence of mild benefit
for the use of amphetamines in cocaine addiction (138).
Similarly, modafinil, a medication used for narcolepsy that
has mild stimulant properties (139), has been shown by some
studies to be beneficial for the treatment of cocaine addiction
(140), though not by others (141). A different approach, based
on studies documenting that enhanced glutamatergic sig-
naling from limbic and ventral prefrontal regions can drive
cue-induced cravings and relapse (142), targets medications
that can help restore balance to these glutamatergic pro-
jections. For example, N-acetylcysteine, which helps mod-
ulate glutamate signals by activating the cystine-glutamate
exchange and thereby stimulating extrasynaptic metabotropic
glutamate receptors (143), decreases cocaine seeking in
animal models (144). N-acetylcysteine is well tolerated in
cocaine-dependent individuals and may reduce cocaine-
related withdrawal symptoms and craving (145). A clinical
trial did not findN-acetylcysteine to be effective for patients
actively using cocaine; however, N-acetylcysteine reduced
cravings and prevented relapse in patients who had achieved
abstinence (146). The efficacy of N-acetylcysteine is limited
by low bioavailability and poor permeability of the blood-
brain barrier. Similar compounds with greater potency and
bioavailability, such as N-acetylcysteine amide, may prove
more effective (147).

Strategies to deliver degradative enzymes have also been
proposed forcocaineusedisorders, andresearch isongoing to

develop stable, long-lasting forms of cocaine-degrading en-
zymes, including cocaine esterase, cocainehydrolase (148–151),
and butyrylcholinesterase (152). Preclinical evidence has
shown that these fusion proteins increase cocaine’s metab-
olism (153, 154). However, clinical studies have failed to show
efficacy (152).

Antiepileptic drugs have also been evaluated in the man-
agement of substance use disorder. A proposed mechanism
for their benefit is that in cocaine use disorders, and in other
substanceusedisorders, dysfunctionofGABA-ergic signaling
contributes to drug taking (155, 156). Gabapentin, a widely
prescribed anticonvulsant and pain medication, has shown
some benefits in the treatment of alcohol use disorders (157)
and might reduce cannabis use and withdrawal symptoms in
cannabis use disorders. Topiramate is an antiepileptic med-
ication (158) for which there is preliminary clinical evidence
of reduced cocaine use and improved outcomes in cocaine-
dependent individuals (159). In methamphetamine users,
topiramate reduced the amount of drug taken by patients
with an active use disorder and reduced relapse rates among
those in recovery (160).

Promising Nonpharmacological Therapies
Alternative nonpharmacological strategies include vaccines
and other biologics (i.e., monoclonal antibodies and gene-
delivery strategies); neural stimulation technologies, such as
transcranial magnetic stimulation (TMS), transcranial direct
current stimulation (tDCS), deep-brain stimulation, and
peripheral stimulation devices; and behavioral interventions.

Biological therapeutics. Vaccines and passive immunization
with antibodies work by binding to the drug in the blood and
preventing it fromentering the brain. Preclinical studieshave
shown encouraging results for vaccines against prescription
opioids, heroin, and fentanyl, inducing high-titer antibody re-
sponses to opioids (161–163). Clinical studies both with cocaine
and nicotine vaccines have resulted in insufficient antibody
titers in humans, and further work is needed (164–166).

A similar approach involves passive immunization, or
treating patients with monoclonal antibodies. Monoclonal
antibodies can be delivered in high concentrations, and
the dosing can be more precisely controlled than with
vaccines. An anti-methamphetamine monoclonal antibody
(ch-mAb7F9)was found to be safe andwell tolerated in phase
1 trials (167). Research is ongoing to develop monoclonal
antibodies for fentanyl, nicotine, and cocaine (168, 169).
Production of long-lasting monoclonal or polyclonal anti-
bodies against very potent synthetic opioids (e.g., fentanyl
and its analogs) could be beneficial to prevent relapse and
help prevent overdoses, which are currently driving in-
creases in fatalities in the United States (1, 170).

Brain and peripheral stimulation therapeutics. The identifi-
cation of the neuronal circuits affected in addiction can also
suggest therapeutic targets for brain stimulation strategies,
such as TMS and tDCS. Examples include the strengthening
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of prefrontal activity to improve self-regulation or the modula-
tionof limbicpathwaystoreduceincentivesalienceandcravings.

TMS uses repetitive pulses of a magnetic field, and tDCS
uses weak electrical currents through electrodes placed on
the scalp to modulate the activity of targeted brain regions.
Preliminary clinical trials have reported positive results
with TMS for the treatment of nicotine, alcohol, and cocaine
use disorders and with tDCS for nicotine, alcohol, cocaine,
methamphetamine, opioid, and cannabis use disorders, with
reductions in cravings, use, or both reported (171–173). Most
studies have targeted the dorsolateral prefrontal cortex, al-
though some studies have targeted the anterior cingulate
cortex, the insular cortex, the frontal-parietal-temporal area,
and the ventromedial prefrontal cortex. The small sample
sizes, short durations, and heterogeneity in technical pro-
tocols (e.g., frequency, duration, hemisphere targeted) limit
the conclusions that can be drawn. However, existing re-
search suggests these technologies have significant potential
for the treatment of addiction.

Other nonpharmacological strategies include peripheral
nerve stimulation and neurofeedback strategies. An example
of a peripheral nerve stimulator is the BRIDGE, an FDA-
approved device for the treatment of pain, which is being
explored as a treatment to reduce opioid withdrawal
symptoms and facilitate induction on opioid use disorder
medications (174). Neurofeedback strategies train patients to
regulate their own brain activity using real-time feedback
from functional magnetic resonance imaging or EEG. These
strategies can be used in combination with behavioral in-
terventions to help improve executive function in addicted
individuals (175). A few small studies have found positive
results with EEG neurofeedback in individuals with alcohol
and cocaine use disorder (176, 177). Although these treat-
ments are still in their infancy, these studies are promising
and may lead to treatment advances.

Behavioral therapies. There is also a significant body of re-
search describing the efficacy of behavioral interventions
for substance use disorder. Currently, these represent the
only interventions available to treat stimulant, cannabis, and
hallucinogen use disorders. Understanding the neurobio-
logical mechanisms that underlie their efficacy is important
for guiding the refinement of behavioral treatment strategies.

THE PROMISE OF BASIC RESEARCH

Basic research is the foundation for future advancements in
addiction prevention and treatment. A sustained focus in this
area will help researchers define the pathways from gene
variation to molecular profile, neuron function, brain-circuit
activity, and ultimately to disordered behavior, revealing new
targets for prevention and treatment interventions.

While research in animal models has contributed to the
development of medications for alcohol, opioid, and tobacco
use disorders, it often fails to predict efficacy in clinical trials.
This may reflect the reliance on abstinence as the primary

endpoint inclinical trials for substanceusedisorder.Theuseof
alternative outcomes may lead to greater correlation of find-
ings. In parallel, researchers are incorporating more complex
social environments into experiments testing medications in
animal models that might increase their predictive validity.

The prevention and treatment of substance use disorders
would also benefit from biomarkers to help classify indi-
viduals into biologically based categories that are repro-
ducible and have predictive validity (178). Biomarkers for the
detection of drug exposures in body fluids are valuable but
canbeused to corroborateonlyacuteor relatively recentdrug
use. Thus, research is needed to develop and validate bio-
markers that reflect chronic drug exposure and that predict
disease trajectories and treatment responses. Advances in
genetic, epigenetic, and brain imaging tools and technologies
offer unprecedented opportunities for the development of
such biomarkers.

The same neuroimaging tools that have expanded our
understanding of the structural and functional deficits un-
derlying addiction may one day be deployed to monitor,
optimize, and personalize addiction treatment (175). An in-
dividual’s environment, experience, and biology combine
to determine his or her risk for developing a substance use
disorder, the trajectory the substance use disorder will take,
and the interventions that will be most effective for treating
it. Large, national investments in basic research, including
the Brain Research Through Advancing Innovative Neuro-
technologies (BRAIN) Initiative (179), the Adolescent Brain
Cognitive Development study (74), and the Precision Med-
icine Initiative (180), a prospective study that aims to ge-
notype and phenotype one million Americans, are poised to
bridge the gap between neuroscience, genetics, behavioral
research, and personalized interventions for the prevention
and treatment of substance use disorder.

CONCLUSIONS

Scientific advances have revolutionized our understanding of
the biological and psychosocial drivers of addiction. There is
tremendous potential to translate this vast knowledge base
into meaningful advances in the prevention and treatment of
substance use disorder that will benefit not only addiction
medicine but the multiplicity of health conditions that are
triggered or exacerbated by drug use (181).
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